top of page

Research  Themes

Themes

Our primary research interests revolve around mountains and tropical clouds.  This includes dynamical studies of orographic precipitation, and microphysical studies of aerosol impacts on clouds, either from giant sea-salt nuclei, or accumulation mode aerosols.

A running theme in our work is the inclusion of in-situ measurements and numerical models including fully coupled models like WRF, and manually written models from a set of equations for droplet growth or the development of buoyancy.

See below for a brief overview of our past and present research projects.

Research  Projects

Recently Funded, Currently Funded and Upcoming Projects

1. CAREER: Quantifying the Sea Salt Aerosol Size Distribution in the Coastal Atmosphere: The Role of Wind and Waves
2. ChangeHI: Part of the simulating change team to learn how climate change will impact Hawaii's weather
3. PRECIP: Prediction of Rainfall Extremes in the Pacific. Field campaign based in Taiwan, summer 2022.
4. Hawaii State Mesonet - ~100 weather stations will be installed across Hawaiʻi, as part of a new weather network
5. CIVIC
: Hoʻomalu Haleleʻa - Community-led Innovation for Integrated Flood Resilience
Sea-Salt Aerosols

Over the ocean, sea salt particles are constantly emitted from the ocean surface from breaking waves and bursting bubbles.  Sometimes these particles are able to make it to cloud base where they grow rapidly by condensation because of their hygroscopicity.  This rapid growth gives them a particular advantage when considering their impact on precipitation formation. We sample these sea-salt aerosols in the marine boundary layer using a new instrument called the mini-GNI, or miniature Giant Nucleus Impactor.

Publications

Ackerman, K. L., A. D. Nugent, C. Taing, 2023: Mechanisms controlling giant sea salt aerosol size distributions along a tropical orographic coastline, Atmos. Chem. Phys., 23, 13735–13753. (doi.org/10.5194/acp-23-13735-2023)

Taing, C., K. Ackerman, A. D. Nugent , J. B. Jensen, 2021: A new instrument for observing the coarse-mode sea-spray aerosol size distribution. J. Atmos. Ocn. Tech., 38, 1935-1947.

Jensen, J. and A. Nugent, 2017: Condensational Growth of Drops Formed on Giant Sea-Salt Aerosol Particles. J. Atmos. Sci., 74, 679–697, doi: 10.1175/JAS-D-15-0370.1. (doi: http://dx.doi.org/10.1175/JAS-D-15-0370.1)


Aerosols in Orographic Convection
 

Tiny airbourne particles can have an impact on the orographic clouds.  The number of particles affects the number of cloud droplets that form, in addition to their size, and their ability to form precipitation.  Observations from DOMEX show a clear signal of aerosols getting up into clouds and having an impact there.  A subsequent model study shows that the impact of aerosols on precipitation is less clear.

Publications:

Zuo, T., A. D. Nugent, and G. Thompson, 2021: Volcanic aerosol impacts on Hawaiʻi Island rainfall. J. Atmos. Sci., 78(7), 2249-2264, doi:10.1175/JAS-D-20-0260.1

Nugent, A. D., C. Watson, G. Thompson, and R. Smith, 2016: Aerosol Impacts on Thermally Driven Orographic Convection. J. Atmos. Sci., 73, 3115–3132, doi: 10.1175/JAS-D-15-0320.1. (doi: http://dx.doi.org/10.1175/JAS-D-15-0320.1)

full-BAMS-D-19-0104.1-f1.jpg
Tropical Cyclone Dynamics & Impacts

 

When tropical cyclones approach islands, many things can happen. Depending on the strength and size of the storm and the size of the island, tropical storms can be drawn toward the island topography, or the precipitation that falls may simply be enhanced by orographic uplift. This interaction between TCs and orography is of great importance for understanding the impact of TCs on island populations.

Publications:


Nugent, A. D., R. Longman, C. Trauernicht, H. Diaz, M. Lucas, T. Giambelluca, 2020: Fire and rain: The legacy of Hurricane Lane in Hawaiʻi. Bull. Amer. Meteor. Soc. 101(6), E954 - E967, doi:10.1175/BAMS-D-19-0104.1


Nugent, A. D., and R. Rios-Berrios, 2018: Factors leading to extreme precipitation on Dominica from Tropical Storm Erika (2015). Mon. Wea. Rev., 146(2), 525-541, doi:10.1175/MWR-D-17-0242.1

DOMEX: Dynamics of Orographic Convection
 

Orographic convection refers to a developing buoyant flow that is initiated by a mountain or raised topography.  In this case, the buoyant flow results in beautiful tropical clouds, and the raised topography is the island of Dominica in the Caribbean.  The dynamics of orographic convection varies from thermally forced to mechanically forced convection, strongly dependant on the strength of the low level wind speed.

Publications:
Watson, C. D., R. B. Smith, and A. D. Nugent, 2015: Processes controlling precipitation in shallow, orographic, trade-wind convection. J. Atmos. Sci., 72, 3051–3072. (doi: http://dx.doi.org/10.1175/JAS-D-14-0333.1)

Nugent, A. D., and R. B. Smith, 2014: Initiating convection in an inhomogeneous layer by uniform ascent.  J. Atmos. Sci., 71, 4597–4610. (doi: http://dx.doi.org/10.1175/JAS-D-14-0089.1)

Nugent, A. D., J. R. Minder, and R. B. Smith, 2014: Wind speed control of tropical orographic convection.  J. Atmos. Sci., 71, 2695-2712. (doi: http://dx.doi.org/10.1175/JAS-D-13-0399.1)

Minder, J. R., R. B. Smith, and A. D. Nugent, 2013: The dynamics of ascent-forced orographic convection in the tropics: results from Dominica. J. Atmos. Sci., 70, 4067–4088. (doi: http://dx.doi.org/10.1175/JAS-D-13-016.1)

Smith, R. B., J. R. Minder, A. D. Nugent, T. Storelvmo, D. J. Kirshbaum, R. Warren, N. Lareau, P. Palany, A. James, and J. French, 2012: Orographic Precipitation in the Tropics: The Dominica Experiment. Bull. Amer. Meteor. Soc., 93, 1567–1579. (doi: http://dx.doi.org/10.1175/BAMS-D-11-00194.1)
DEEPWAVE: Gravity Wave Energy Fluxes
 

The field campaign title "DEEPWAVE" refers to the deep propagation of gravity waves into the upper atmosphere over New Zealand.  Gravity waves are waves with gravity being the restoring force; therefore they only exist in stabily stratified fluid.  They are often caused by airflow over topography, just as ripples on the surface of a pond can be caused by a dropped pebble.  Using aircraft measurements, the amount of energy carried by these waves can be quantified.

Publications:
Fritts, D. C., R. B. Smith, M. J. Taylor, J. D. Doyle, S. D. Eckermann, A. Dörnbrack, M. Rapp, B. P. Williams, P.-D. Pautet, K. Bossert, N. R. Criddle, C. A. Reynolds, P. A. Reinecke, M. Uddstrom, M. J. Revell, R. Turner, B. Kaifler, J. S. Wagner, T. Mixa, C. G. Kruse, A. D. Nugent, C. D. Watson, S. Gisinger, S. M. Smith, R. S. Lieberman, B. Laughman, J. J. Moore, W. O. Brown, J. A. Haggerty, A. Rockwell, G. J. Stossmeister, S. F. Williams, G. Hernandez, D. J. Murphy, A. R. Klekociuk, I. M. Reid, J. Ma, 2015: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An Airborne and Ground-Based Exploration of Gravity Wave Propagation and Effects from their Sources throughout the Lower and Middle Atmosphere. Bull. Amer. Met. Soc., In Press (doi: http://dx.doi.org/10.1175/BAMS-D-14-00269.1)
 
Smith, R., A. Nugent, C. Kruse, D. Fritts, J. Doyle, S. Eckermann, M. Taylor, A. Dörnbrack, M. Uddstrom, W. Cooper, P. Romashkin, J. Jensen, and S. Beaton, 2016:Stratospheric Gravity Wave Fluxes and Scales during DEEPWAVE. J. Atmos. Sci., 73, 2851–2869, doi: 10.1175/JAS-D-15-0324.1. (doi: http://dx.doi.org/10.1175/JAS-D-15-0324.1)
bottom of page